منابع مشابه
On two problems concerning the Zariski topology of modules
Let $R$ be an associative ring and let $M$ be a left $R$-module.Let $Spec_{R}(M)$ be the collection of all prime submodules of $M$ (equipped with classical Zariski topology). There is a conjecture which says that every irreducible closed subset of $Spec_{R}(M)$ has a generic point. In this article we give an affirmative answer to this conjecture and show that if $M$ has a Noetherian spectrum, t...
متن کاملon two problems concerning the zariski topology of modules
let $r$ be an associative ring and let $m$ be a left $r$-module.let $spec_{r}(m)$ be the collection of all prime submodules of $m$ (equipped with classical zariski topology). there is a conjecture which says that every irreducible closed subset of $spec_{r}(m)$ has a generic point. in this article we give an affirmative answer to this conjecture and show that if $m$ has a noetherian spectrum, t...
متن کاملA Zariski topology for k-semirings
The prime k-spectrum Speck(R) of a k-semiring R will be introduced. It will be proven that it is a topological space, and some properties of this space will be investigated. Connections between the topological properties of Speck(R) and possible algebraic properties of the k-semiring R will be established.
متن کاملThe Basic Zariski Topology
We present the Zariski spectrum as an inductively generated basic topology à la Martin-Löf and Sambin. Since we can thus get by without considering powers and radicals, this simplifies the presentation as a formal topology initiated by Sigstam. Our treatment includes closed and open subspaces: that is, quotients and localisations. All the effective objects under consideration are introduced by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2011
ISSN: 0166-8641
DOI: 10.1016/j.topol.2010.11.021